Influence of cell background on pharmacological rescue of mutant CFTR.

نویسندگان

  • Nicoletta Pedemonte
  • Valeria Tomati
  • Elvira Sondo
  • Luis J V Galietta
چکیده

Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs the maturation and gating of the CFTR protein. Such defects may be corrected in vitro by pharmacological modulators named as correctors and potentiators, respectively. We have evaluated a panel of correctors and potentiators derived from various sources to assess potency, efficacy, and mechanism of action. For this purpose, we have used functional and biochemical assays on two different cell expression systems, Fischer rat thyroid (FRT) and A549 cells. The order of potency and efficacy of potentiators was similar in the two cell types considered, with phenylglycine PG-01 and isoxazole UCCF-152 being the most potent and least potent, respectively. Most potentiators were also effective on two mutations, G551D and G1349D, that cause a purely gating defect. In contrast, corrector effect was strongly affected by cell background, with the extreme case of many compounds working in one cell type only. Our findings are in favor of a direct action of potentiators on CFTR, possibly at a common binding site. In contrast, most correctors seem to work indirectly with various mechanisms of action. Combinations of correctors acting at different levels may lead to additive F508del-CFTR rescue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.

Most mutants of the cystic fibrosis transmembrane conductance regulator (CFTR) that cause severe symptoms of cystic fibrosis do not reach the cell surface because they are defective in folding. Many CFTR folding mutants, however, including the DeltaF508 mutant found in more than 90% of cystic fibrosis patients, are potentially functional at the cell surface if they can be induced to fold correc...

متن کامل

O-28: New Insights into the Mechanisms UnderlyingChlamydia Trachomatis Infection InducedFemale Infertility

Background: Chlamydia (C.) trachomatis is an obligate intracellular gram-negative pathogen affecting over 600 million people worldwide with 92 million new cases occurring globally each year. Genital C. trachomatis infection has been recognized as the most common cause of pelvic inflammatory disease leading to severe tubal damage, ectopic pregnancy, hydrosalpinx and infertility. However, the mec...

متن کامل

Pharmacological rescue of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) detected by use of a novel fluorescence platform.

Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. ...

متن کامل

Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.

Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced c...

متن کامل

Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622.

The most common mutation (F508del) causing cystic fibrosis (CF) results in misfolding of the CF transmembrane conductance regulator (CFTR), leading to its degradation via the proteasome pathway. To study the mechanism of action of several pharmacological chaperones benzo[c]quinolizinium (MPB), we analyzed their effects on two CF mutations; F508del-CFTR and G622D-CFTR. The replacement of Gly622 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 298 4  شماره 

صفحات  -

تاریخ انتشار 2010